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Abstract 

 

     It is pointed out that the applicability of the harmonic gauge has never been generally established if the resulting 

coordinate system is expected to be physically realizable. A gravitational plane wave is given to show that the har-

monic "gauge" may not be applicable and that implications of the linearized gauge on plane waves can be invalid. 

Concurrently, it is shown that, for weak gravitational waves, the harmonic gauge is valid only if the Einstein tensor is 

of second order deviation from the flat metric. Since such an order is gauge invariant, a gravitational weak wave with 

an Einstein tensor of first order, implies that the harmonic gauge can be a misnomer. Moreover, it is shown that the 

"gauge condition" may not be compatible with coordinate relativistic causality and the equivalence principle. Concur-

rently, it is also shown that the Ohanian and Ruffini approach in which, different from Einstein’s, linear gravity is con-

sidered as derived from their gauge theory is not valid in physics. 
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1. Introduction. 

     In 1917, Hilbert [1,2] shows that a solution of Einstein equation is not unique, and depends on a choice of the 

physical coordinates. It was believed also that the harmonic “gauge” be unconditionally applicable. In this paper, a 

counter example is provided to call the attention to this 70-year-old mistake. This is consistent with the fact [3] that 

some mathematical coordinate systems are incompatible with Einstein’s equivalence principle1) and therefore not 

physically realizable (see also Appendix A). The belief that any coordinate system was valid as a space-time coordi-

nate system in physics [4], has led Ohanian and Ruffini [5] to develop their gauge theory approach from which they 

criticize Einstein’s theory [6,7] as premature. Here, it will be shown that their approach is not valid in physics.  

     The non-linear Einstein's field equation [6-8] reads 

 

Gab ≡ Rab - 
1

2
gabR = - KTab ,       (1a) 

 

where Gab is the Einstein tensor, Rab is the Ricci curvature tensor, Tab is the energy-stress tensors for matter, and K (= 

8πκc-2, and κ is the Newtonian coupling constant) is the coupling constant2).  

     However, the source term KTab generally depends on the space-time metric gab [8,9]. Thus, unlike the case of elec-

tromagnetism, this source term may not be considered as the cause of gravity represented by metric gab [10,11]. It fol-

lows that to consider gravity in a complete analogy manner with electromagnetism, as Ohanian and Ruffini [5] pro-

posed, may not be valid (see also section 3). It should be noted in particular that the notion of gauge in gravity, though 

somewhat similar in mathematics, is physically different from the gauge notion of electromagnetism. 

     The harmonic coordinate condition [2,4-9] is 

 

 ax∂
∂ ( abgg 2

1
) = 0,        (1b) 

 

where g is the determinant of the metric. It was believed that a physical coordinate system with condition (1b) could be 

achieved by making the following gauge transformation, in terms of the covariant derivations, 
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γab → γab + ∇aζ b + ∇bζa       (1c) 

 

where γab ≡ gab - ηab and ηab is the flat metric. Formally, the required gauge vector ζa would be obtained by solving 

the differential equation derived from Eq. (1b) and transformation (1c) (see section 2).  

     However, depending on the situations, a mathematical condition may be invalid in physics. (e.g., the spherical 

symmetry is invalid for a cubical massive source.) A counter example will be provided to illustrate that, for some prob-

lems, the "gauge condition" (1b) may not be applicable to obtain a physical coordinate system. 

     It should be pointed out that the question of applicability of (1b) is distinct from the Cauchy problem. In a Cauchy 

problem, the initial satisfaction of (1b) is assumed. In the validity problem of a gauge, a solution is given and then it is 

asked whether a gauge transformation exists such that the "gauge condition" (1b) becomes valid. Thus, although the 

existence of a mathematical solution for a Cauchy problem has been confirmed by Bruhat [12], the applicability prob-

lem of (1b) remains. On the other hand, since the harmonic coordinate condition (1b) is not applicable for some situa-

tions, a Cauchy solution may not be physically valid. 

     To establish a counter example, it is useful to consider the weak gravitational waves. In particular, an order count-

ing in terms of the coupling constant is possible for weak gravity although, for a non-linear equation, a perturbative 

approach (e.g., linearization) may not necessarily be valid [13].  

 

2. A Gauge Invariant Criterion. 

     For the purpose of examining weak gravity, it is convenient to use the notation in linearized gravity [4-9], which 

expresses relations in terms of deviations γab (≡ gab - ηab) from the flat metric ηab . Then, if only the first order terms 

are considered, eqs. (1a), (1b), and (1c) are respectively reduced to [4-6] 

 

G(1)
ab ≈ -KTab,  where G(1)

ab ≡ Gab - G(2)
ab     (2a) 

and 

G(1)
ab = 

1

2
∂c∂

cγ ab + H(1)
ab , H(1)

ab ≡ -
1

2
∂ c[∂ bγ ac + ∂aγ bc] + 

1

2
ηab∂

 c∂ dγ cd ; 
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and 

∂ cγ cb ≈ 0 ,         (2b) 

where   

γ ab ≡ γab -
1

2
γ ηab , and γ = ηcd γcd ;  

and 

γab → γab + ∂aζb + ∂bζa ,        (2c) 

 

Then, using gauge (2b), the equation for ζa is reduced to 

 

∂c∂cζb = - ∂ cγ cb ,        (2d) 

and 

1

2
∂c∂ cγ ab = -KTab ,        (2e) 

 

is obtained from Eq. (2a). A crucial problem is whether (2d) has a solution, which is valid in physics. For the counter 

example in Section 4, Eq. (2d) has no physical solution and (2e) is not valid. One might argue, however, that gauge 

(1b) may still be valid since Eq. (2d) is only an approximation. 

     Thus, one has to develop a non-perturbative approach for weak gravity. If (2b) is valid, G(1)
ab ≈ (1/2)∂c∂cγ ab . 

This means that Gab is of second order deviations if ∂c∂cγ ab ≈ 0 everywhere. It follows that if condition (1b) is valid, 

then G(1)ab is of second order deviations since (2b) is the linear approximation of (1b). Thus, (1b) also implies that Gab 

is of second order deviations. In conclusion, for weak waves (∂c∂
cγ ab ≈ 0 everywhere), “gauge condition” (1b) (or 

[2b]) is valid only if the related Einstein tensor is of second order deviations. 

     However, the above conclusion is a criterion only if the order of the Einstein tensor is invariant under a gauge trans-

formation (1c). It is known that G(1)
ab is invariant under the linearized form of gauge transformation (2c) [2-6]. It fol-

 4



lows that a transformation (1c) can change G(1)
ab only up to the second order deviations if the weak gravity condition 

is maintained. Thus, for weak gravity, the order of Gab is invariant under a gauge transformation (exact and linearized), 

and Gab is of either first or second order only. Indeed, for weak waves, the order of Gab is invariant.  

 

3. Linear Field Equations and the Question of Gauge. 

     Due to inadequate understanding of Einstein’s equivalence principle [7], many theorists, including the Wheeler-

Hawking school [9,14], believed in unrestricted covariance. This misconception [3], in turn, is the theoretical basis of 

the current gauge notion. The so-called gauge freedom is due to the fact that there are only six independent equations 

from (1a) because of the Bianchi identities ∇cGcb = 0. The additional four conditions to determine the metric gab is 

called the gauge condition. Since gab must satisfy Einstein’s equivalence principle, these gauge conditions cannot be 

arbitrary [3]. Nevertheless, it was generally believed that the harmonic gauge can always be satisfied [4,5,8,9] although 

Einstein [7] has expressed some doubt on its general validity. 

     In case of weak gravity, a superficial support for the unrestricted gauge notion is that equation (2e) is similar to the 

Maxwell equation, and the harmonic gauge takes the form (2b), which is similar to the Lorentz gauge. These mathe-

matical similarities are part of the motivation that leads Ohanian & Ruffini [5] to propose that the linear field equations 

can be based on their “gauge theory”. Since they considered Einstein’s theory as premature and not logical enough3) 

[5], they should have done better. The fact is, however, that their logic cannot be classified as valid.  

     They started with the notation hab for the gravitational field tensor, and they believed that the most general field 

equation that is linear in hab, is of second differential order, and contains Tab as source must have the form, 

 

 - α’ + β + β’ = -κ Tab , (3a) c
c

baabc
c hh ∂∂+∂∂ α )( bca

c
acb

c hh ∂∂+∂∂ d
d

c
c

ab h∂∂η cd
dc

ab h∂∂η

 

where α, α’, β, β’, and κ are constants. It seems that, for the justification of their approach, there nothing more than 

personal preference and the speculation based on mathematical similarity. Also, based on the conservation law, 

 

∇aT
ab = Tab

;a = a

ab

x
T
∂
∂ +Γa

acT
cb + Γb

acT
ac,     (4) 
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κ∂aT
ab, is known to be of the second order. Then, Ohanian and Ruffini obtain the field equation  

 

 - - + = -κ Tab , (3b) c
c

baabc
c hh ∂∂+∂∂ )( aca

c
acb

c hh ∂∂+∂∂ d
d

c
c

ab h∂∂η cd
dc

ab h∂∂η

 

and to their satisfactory, (3b) is invariant with respect to a gauge transformation 

 

hab → hab + ∂aΛb + ∂bΛa ,       (2c’) 

 

for any gauge vector Λa (even it is large). Moreover, by using 0=∂ cb
ch , one can reduce (3b) to 

 

 abc
c h∂∂ = -κ Tab , where  c

c
ababab hhh η

2
1

−≡     (3c) 

 

Thus, their gauge theory approach could be valid although Newton’s theory of gravity is not a gauge theory.  

     However, an implicit assumption in this approach is that a first order solution of gravity exists for a dynamic situa-

tion that produces gravitational radiation. Thus, it is necessary to check whether the resulting equation is compatible 

with this assumption. But, Ohanian and Ruffini [5] neglected this crucial step. Nevertheless, they later identified 

 

κhab= ,  db
cd

ac ηγη

then 

G(1)
ab = -

1

2
κ2Tab.        (3d) 

 

is equivalent to (3b). But, the implication of Eq. (3d) is distinct form that of Eq. (2a), which is an approximation. 

Whereas (2a) implies only that K∂aTab is of second order; (3d) implies ∂aTab = 0. Thus, when the energy tensor is Tνµ 

(m) of massive matter, as pointed out by Wald [4] and Yu [15], there is no gravitational radiation. Thus, (3b) is incor-
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rect for massive matter in a dynamic situation. It thus follows that the derivation of linear gravity by Ohanian and Ruf-

fini from their gauge theory is invalid. In the 80s, Logunov and Mestvirishvili [16] also criticized Einstein’s theory 

from the viewpoint of a gauge approach, and it turns out that their theory has been found to be incorrect [17]. 

     The harmonic gauge (2b) transforms (3d) to (2e) that allows radiation but is not gauge invariant. Moreover, as 

shown by Eddington [18], (2e) implies (2b) and is compatible with (4). Thus, Eq. (3) is just irrelevant [17]. This is 

consistent with our earlier analysis that a gauge condition cannot be arbitrary [3]. In a nonlinear equation, unlike the 

linear equation, the higher order terms can play a crucial part that Ohanian and Ruffini [5] over looked.  

 

4. A Counter Example for the "Gauge Condition". 

     The above analysis has shown clearly that linear gravity is not a gauge theory. It is also known [13,17] that lin-

earized gravity [2,4,5,9] is unreliable. Having established a simple criterion in section 2, it remains to identify a gravi-

tational plane wave whose Einstein tensor is of first order deviations. The given counter example of plane waves 

would unambiguously show that some implications of linearized gravity are false. Let us consider a source tensor, 

 

Tik = PiPk gmnAmAn - gmn(∇iAm - ∇mAi)(∇kAn - ∇nAk),     (5a) 

where 

Px = Py = 0 ,  Pt = -Pz = ω ,        (5b) 

 

and ω is a constant [19]. Although what matter in here is whether the resulting metric gives a Lorentz manifold, it 

would be beneficial to clarify some theoretical considerations before hand. Am represents an electromagnetic plane-

wave propagating in the z-direction, and polarized diagonally in the x-y plane. Its non-zero components are: 

 

Ax = Ay = 
2

A cos ω(t - z),        (5c)  

 

where A is a constant. Note that since Pm is a constant vector, ω(t - z) = Pmxm = ∫Pmdxm represents a scalar. Then a 

solution4) of the Einstein field equation is  
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γxx = γyy = γxy = - 
4

2KA [1 – cos 2ω(t - z)] ,      (6a) 

 

γtt = - γzz = [1 - 2γxx]-1/2 - 1 ,        (6b) 

 

and otherwise γab = 0. Note that, from wave (6), both γtt and (γxx + γyy) are of first order deviations.  

     Thus, wave (6) has a polarization, which is linearly independent of the two polarizations allowed by linearized 

gravity [2,4,5,9]. Thus, wave (6) illustrates that implications of the linearized gauge on plane waves may not be valid. 

     This can also be shown explicitly. Solution (6) satisfies g = -1, 

 

gtt - 2gtz + gzz = gtt + 2gtz + gzz = 0 ,      (7a) 

and 

gxt - gxz = gyt - gyz = gxt + gxz = gyt + gyz = 0 .     (7b) 

 

Relation (7) implies 

 

∂agax = ∂agay = 0  {∂aγ ax = ∂aγ ay = 0} ,      (8a) 

and 

∂a(gat - gaz) = 0   {∂a(γ at + γ az) = 0} ,      (8b) 

but 

∂a(gat + gaz) = 2 ∂t(gtt + gtz) -1 {∂a(γ at - γ az) = ∂t(γxx + γyy)} .   (8c) 

 

Due to Eq. (8c), Eq. (1b) (or (2b)) is valid only if the momentum Pk = 0. This suggests that (1b) cannot be satisfied 

physically. In fact, there is no physical gauge transformation, which can make (1b) satisfied.  

     One might argue that Hilbert [2] has shown that Eq. (2d) would have a physical solution for a source of massive 

matter. However, for such a case, an implicit assumption in Hilbert’s “proof” is that the term ∂cγ cb (of first order) 

 8



does not satisfy ∂c∂c[∂
aγ ab] ≈ 0 everywhere. This condition is not satisfied by metric (6). Also, Eq. (2e) does not pro-

vide an approximation for wave (6). 

     To confirm that the "gauge condition" is not applicable to the weak plane wave (6), one must prove additionally that 

its Gab is of first order deviations. It follows Eq. (5) and Eq. (6) that  

 

Tik = ρPiPk ,         (9a) 

where 

ρ(t - z) = -
G
A2

cos[2ω(t - z)] , and G = (1 - 2 γxx).     (9b) 

 

The source term KTik and therefore the Einstein tensor is of first order deviations. Thus, unless weak gravity depends 

on the chosen gauge, condition (1b) (or (2b)) is not a gauge that can be applied unconditionally.  

     It should be noted that not only, as Eq. (1a) implies, ∇kTki = 0 but also 

 

∂kTki = 0.          (10) 

 

Thus, the linearized conservation law is a necessary but not a sufficient condition for the "gauge" condition (2b). Eq. 

(10) implies that there is no gravitational acceleration for the photons [10,11,19].  

     One can see also that linearized gravity is not valid from the viewpoint of field equations. Although the source ten-

sor (5) is non-zero, the metric elements (6) satisfy a homogeneous Maxwell equation 

 

∂c∂
cγ ab = 0 .         (11) 

 

However, the linearized equation is an inhomogeneous Maxwell equation with a source of first order deviations. Thus, 

an approximation of the exact solution cannot be obtained through a linearized equation.  

 

5. Physical Conditions on a Metric. 
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     From the above analysis, although it may be possible to have a mathematical coordinate transformation such that 

the gauge condition is satisfied, the transformed metric would be neither weak nor a plane-wave. If the transformed 

metric were physically valid, there would be a problem of self-consistency because, from the viewpoint of physics, 

weak gravity should be independent of the valid gauge chosen because of the restriction due to the plane-wave source. 

     It should be noted that not every solution of Einstein equation is valid in physics (Appendix A). A solution of Ein-

stein's equation may not be compatible with Einstein's equivalence principle, which requires a time-like geodesic repre-

sents a physical free falling [7]. This means that all physical requirements must be satisfied. The mathematical 

existence of a free falling local Minkowski space is only a necessary condition. Thus, coordinate relativistic causality5) 

must be satisfied if the principle of equivalence is to be satisfied [20].  

     The metric of solution (6) has the following form: 

 

ds2 = (1 + 2β)-1/2(dt2 - dz2) - β(dx + dy) 2 - dx2 - dy2 , 

where 

β = β(u) = 
4

2KA [1 - cos 2ω(t-z)] ≥ 0.       (12) 

  

From ds2 = 0, according to Einstein [7], one obtains the velocity of light in the x-direction is determined by 

 

(dx/dt)2 = (1 + 2β)-1/2(1 + β)-1.       (13) 

 

Since β ≥ 0, Eq. (13) implies that (dx/dt)2 ≤ 1. In fact, metric (12) satisfies coordinate relativistic causality. 

     Satisfying coordinate relativistic causality would reject non-physical metric solutions [11] (such as those given by 

Peres [21] and Bonner [22]). Thus, the existence of a Cauchy solution does not imply that a physical gauge transforma-

tion exists for solution (6). From linearized gravity, one may obtain another type of solutions [23], 

 

γ tt = γ zz = - γ tz = - γ zt = 2

4
ωzt +

∫
u

dttf
0

)( , 

and 
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γ xt = - γ xz = γ tx = - γ zx = 2

2
ωx

∫
u

dttf
0

)(       (14) 

 

where f(u) = 2KA2cos2ωu. Otherwise γ ab is zero. However, these metrics are not bounded. They are not physically 

realizable because they do not satisfy relativistic causality. Solution (14) is unrelated to (6) by a physical gauge trans-

formation (see also Appendix B).  

     Physically, solution (6) is the accompanying gravitational wave of electromagnetic wave (5c) [11,19]. This solution 

is consistent with special relativity since the flat metric is an accurate approximation if the electromagnetic wave is 

weak. Then, solution (6) has shown that the gauge is not always applicable. (Note that, in order to have a physical 

solution, it is necessary to include an energy-stress tensor for photons in source tensor (5) [11,19]). In current theory, 

the "proof" for the applicability of the "gauge" condition deals directly with the metric, but now we have shown that 

the nature of source tensor is also important.  

 

6. Conclusion and Discussion. 

     In conclusion, the new approach of Ohanian and Ruffini, based on their notion of gauge invariance, has been shown 

to be invalid. The root of their problem is due to inadequate understanding of Einstein’s equivalence principle. This is 

perhaps also the reason that Einstein’s equivalence principle is ignored in their book. Understandably, due to their mis-

conception on general relativity, Einstein’s theory would appear to them to be insufficiently logical.  

     In general relativity, the gauge notion is inadequate because the restriction by Einstein’s equivalence principle has 

not been included. The "gauge condition" (1b) (or [2b]) is not unconditionally applicable to obtain a physical coordi-

nate system. This conclusion is independent of whether a perturbative approach is valid. The given example shows also 

that solutions of a non-linear equation may not be approachable by the usual linearized perturbation.  

     Moreover, Eq. (2b) also implies the linearized energy-momentum conservation law, which is the root for Einstein's 

radiation formula to be criticized as not self-consistent [4,16]. Since Einstein's radiation formula is supported by obser-

vations [24], the gauge condition (2b) is not generally applicable. Note that, in electrodynamics, the classical gauge 

invariance is also proven to be inconsistent with experiment [25-27]. 

     In this paper, it has been shown also that, in theoretical physics, it is important to go through concrete details (see 

also Appendices A & B). Also, it would be helpful to remember that, depending on the physical situation, a mathe-
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matical field equation does not necessarily imply the existence of a physical solution. A solution in physics must addi-

tionally satisfy related physical requirements such as coordinate relativistic causality and the principle of causality6). 

     Physically, the existence of gravitational waves is due to the fact that gravitational influence must propagate with a 

finite speed [28,29]. Thus, logically the existence of gravitational waves is independent of the "gauge condition". Exact 

solution (6) is an example that the existence of gravitational waves is independent of linearized gravity. For plane 

waves, equation (11) implies that a plane wave travels at the speed of light; whereas condition (1b) would exclude 

some possible polarizations.  
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Appendix A: "Gauge" and the Equivalence Principle. 

     Solution (6) shows that the harmonic "gauge" has not been really established. Thus, the current notion of gauge is a 

result of "formal" mathematics, which is defined as doing "mathematical" manipulations without verifying the related 

mathematical and physical validity. Here, the problems in formal mathematics shall be further illustrated. In particular, 

the current notion of gauge can be incompatible with Einstein's equivalence principle. 

     Currently, the notion of gauge is based on the mathematical concept, diffeomorphism, which is a one-one, onto, C∞ 

(infinitely differentiable) map between two manifolds and its inverse map is C∞ [4]. This notion is based on the fact 

that a diffeomorphism preserves the tensor calculation operations. However, this notion of gauge is inadequate since 

the choice of physical coordinates is also restricted by Einstein's equivalence principle. Some mathematical coordinate 

transformations are invalid in physics because they may not be realizable. 

     The valid choice of a coordinate is in a confusing state among some current theorists. For instance, Hawking [30] 

made clear in 'The Arrow of Time' of his book that a time coordinate is, in several aspects, distinct from a space coor-
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dinate. Nevertheless, he also wrote in the same book that "there is no real distinction between the space and time 

coordinate, just as there is no real difference between any two space coordinates"! 

     As Einstein [31] pointed out, "The proposition of mathematics referred to objects of our imagination, and not to 

objects of reality." A general problem among some relativists is that they are unable to distinguish mathematics from 

physics. In particular, when a transformation mixes both the time coordinate and a space coordinate, examining the 

physical validity of such a transformation is advised.  

     It is known that Galilean transformations are incompatible with special relativity. It will be shown that the resulting 

coordinate system is incompatible with the equivalence principle. Let us consider a Galilean transformation, 

 

x' = x,  y' = y,  t' = t,  and  z' = z + vt.      (A1) 

 

In the new coordinate system, the z'-direction forward light speed is 

 

dz'/dt' = dz/dt + v = c + v,  and dz'/dt' = -c + v     (A2) 

 

for the backward z'-direction. Nevertheless, Galilean transformation (A1) is a diffeomorphism and thus a valid gauge 

in current notion. Moreover, (A1) transforms the Minkowski metric, ds2 = c2dt2 - dx2 - dy2 - dz2 to 

 

ds2 = c2dt'2 - (dz' - vdt') 2 - dx'2 - dy'2       (A3) 

 

for a system K'. The above metric illustrates that ds2 = 0 does not provide a criterion for the validity of a coordinate 

transformation; whereas a crucial physical requirement is that the light speed c in vacuum is the maximum speed. 

     Metric (A3) illustrates that Einstein's equivalence principle is applicable only to physically realizable metrics. Met-

ric (A3) is a constant, and there is no gravitational acceleration. Thus, a free falling non-rotating frame can have only a 

constant speed. Hence, a local coordinate system is obtained only through a Lorentz coordinate transformation. But, a 

Lorentz transformation cannot transform metric (A3) to a local Minkowski space. Thus, the current notion of gauge 

can be incompatible with the equivalence principle. 
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     The equivalence principle is based on the local equivalence between acceleration and gravity. However, many as 

Yu [32, p. 42] incorrectly believed that Einstein’s principle is satisfied if at any space-time point, it is always possible 

to establish a local Minkowski space., which is related to a "free falling". But this is only necessary but insufficient.  

     Nevertheless, mathematics ensures the existence of a local Minkowski space for a free falling. Now, consider an 

observer P' resting at (x', y', z', t'). The geodesic is  

 

dx'/ds = dy'/ds = dz'/ds = 0,  and  dt'/ds = (c2 - v2)-1/2    (A4) 

 

Accordingly, (0,0,0,dt') is the local time coordinate of P'. Then, the orthonormal vectors of the tetrad are 

 

a1 = (1,0,0,0),  a2 = (0,1,0,0),  a3 = (0,0,α,β),  and  bp' =(0,0,0,γ)   (A5) 

where  

α = γ-1,  β = - γvc-2,  and  γ = (1 - v2c-2)-1/2 . 

 

The corresponding transformations is as follows: 

 

dt' = γ (dT - vc-2dZ),  dz' = γ-1dZ,       (A6) 

and 

dx' = dX,  and  dy' = dY. 

 

Thus, (dx', dy', dz') and (dX, dY, dZ) share the same frame of reference because there is no acceleration nor relative 

motion. But, there is spatial measurement changes in the z-direction. Metric (A3) does not satisfy the equivalence prin-

ciple since there is no physical cause for transformation (A6). In relativity, such a physical transformation happens 

only when there is motion and/or acceleration. Thus, geodesic (A4) does not represent a physical free fall.  

     The Galilean transformation is an unphysical transformation, and it simply takes another unphysical transformation 

to cancel out the unphysical properties so introduced. In fact, (A1) and (A6) imply  

 

dt = γ (dT – vc-2dZ),  and  dZ = γ dz' = γ(dz + v dt).     (A7) 
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Transformation (A7) is just a Lorentz-Poincaré‚ transformation. 

To circumvent whether a coordinate system is physically valid, some relativists "define" the light speed at any point 

of a manifold in terms of a local Minkowski space. (Note that although a local Minkowski space may exist, as men-

tioned above, the transformation may not be due to a free falling.) However, such a "definition" is not well defined 

since there are manifolds, which cannot be diffeomorphic to a physical space7). Thus, this "definition" is also mislead-

ing in physics since satisfying the equivalence principle must be implicitly assumed. 

     To illustrate the existence of an intrinsic non-physical space, let us consider the following metric [33], 

 

ds2 = du dv + hij(u)xixjdu2 – dxidxi,       (A8) 

 

where u = ct - z, v = ct + z, hii(u) ≥ 0, and hij = hji. This metric satisfies the harmonic gauge. 

It will be shown that metric (A8) is not compatible with coordinate relativistic causality. Metric (A8) has a form, 

 

ds2 = du dv + Hdu2 - dxidxi .        (A9) 

 

A light trajectory satisfies ds2 = 0. For a light in the z-direction (i.e. dx = dy = 0), one obtains 

 

ds2 = dudv + Hdu2 = 0,  and  
H
Hc

dt
dz

−
+

−=
1
1       (A10) 

 

is the backward light speed while the forward light speed is c. Then, coordinate relativistic causality requires H ≤ 0.  

Obviously, this condition is not satisfied by metric (A8).  

     Metric (A8) depends on x (= x1) and y (= x2), and is not weak nor bounded although the cause of metric (A8) can 

be an electromagnetic plane wave. Metric (A8) satisfies 

 

ηab∂b∂aγ tt = -2[hxx(u) + hyy(u) ,  and  γ = ηcdγcd = 0,     (A12) 
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where γab is a deviation from ηab. Thus, metric (A8) is also arbitrary as those derived by Peres [21] and Bonnor [22].  

     The gravitational force is related to Γz
tt = (1/2)∂H/∂t. There are arbitrary non-physical parameters (the choice of 

origin), which are not related to the cause (an electromagnetic plane wave). In other words, the principle of causality is 

also violated. Such a violation is intrinsic, since a diffeomorphism cannot transform away an unphysical parameter. 

Thus, it is impossible to transform this metric to a physical space, which satisfies the equivalence principle.  

 

Appendix B: An Example of Unphysical "Gauge" Transformation 

     As pointed out by Einstein [18], the notion of weak gravity may not be maintained. To illustrate the non-physical 

connection between metrics (12) and (14), let us consider the following change in "coordinates" [23]: 

 

X = 
2

1 (x + y)(1 + β),  where  β = 
4

2KA [1 - cos 2ω(t-z)] ≥ 0 

 

Y = 
2

1  (x - y), 

 

Z = 
2
1 (t + z)(1 + 2β)-1/2 - 

2
1 (t - z), 

 

T = 
2
1 (t + z)(1 + 2β)-1/2 + 

2
1 (t - z).       (B1) 

 

Since u = t - z = T - Z, there is no change for the electromagnetic plane wave (5). Then, metric (12) is transformed to 

 

ds2 = dT2 - dZ2 - dY2 + (1 + 2β)-1(Z + T)dβ(dT - dZ) - (1 + β)-2(1 + 2β) [dX - X(1 + β)-1dβ]2     (B2) 

 

For A = 0, (B1) reduce to a rotation. Now approximate, using β << 1, and so obtain 
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ds2 ≅ dT2 - dZ2 - dY2 - dX2 + 
du
dβ [(Z+T)(dT - dZ)2 + 2XdX(dT - dZ)]    (B3) 

where  

du
dβ  = 

2

2KA sin(2ωu).  

 

Note that (B3) is not yet (14). Now consider the gauge vector ζi.  

 

ζX = ζY = 0; 

 

ζZ = λ[sin 2ω(T - Z) + 2ω (T + Z) cos 2ω(T - Z)] ; 

 

ζT = λ[sin 2ω(T - Z) - 2ω(T + Z) cos 2ω(T - Z)] .      (B4) 

 

For weak gravity, if λ = - KA2/32ω, then (B4) transforms (B3) to metric (14). The fact that the term of the form f(T - 

Z)(T + Z)[dT – dZ]2 can be "gauged" away, manifests the arbitrary nature of this calculation. Now it seems that metric 

(12) could be transformed to (14). 

     However, one should examine whether transformations (B1) and (B4) are physically valid. First, because of the 

factor (T + Z), the gauge vector ζi may not be small and therefore the linearized gauge transformation may not be ade-

quate. Moreover, (B4) transforms a bounded metric (12) to an unbounded metric (B2). Since weak gravity, a physical 

condition, should be independent of the coordinate chosen, (B1) may not be a physically valid coordinate transforma-

tion. In other words, X, Y, Z, and T may not be a valid coordinate system. 

     It will be shown that although the electromagnetic plane wave (5) has the same form after transformation (B1), the 

physics of the space has profoundly changed even though β is very small. From (B1), one obtains 

 

dX = 
2

1 (x + y)β'du + 
2

1 (dx + dy)(1 + β), 

dY = 
2

1  (dx - dy), 
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dZ = 
2
1 dv(1 + 2β)-1/2 - 

2
1 (t + z)(1 + 2β)-3/2β'du - 

2
1 du, 

dT = 
2
1 dv(1 + 2β)-1/2 - 

2
1 (t + z)(1 + 2β)-3/2β'du + 

2
1 du,     (B5) 

 

For a forward light located at the origin of an x-y plane, du = 0. It follows from (B5) that dZ/dT = 1 as expected. But, 

for a backward light (dx = dy = 0, dz/dt = -1) located at the origin of an x-y plane, dv = 0. It follows from (B5)  

 

dX = dY = 0, 

and 

dZ/dT = {β'(t + z)(1 + 2β)-3/2 + 1}/{β'(t + z)(1 + 2β)-3/2 – 1} ≠ -1    (B6) 

 

Thus, in the forward direction, the speed of light is the usual constant. However, in the backward direction (unless β' = 

0), the light velocity is not a constant, but depends on (t + z). (Thus, the light speed can be zero or reach infinite!) 

From (B6) the deviation of dZ/dT from -1 can be very large. This is not consistent with the assumption that the light 

speed in vacuum is the maximum speed. This means that Einstein's equivalence principle is not compatible with this 

metric. Thus, (B1) is not valid in physics, and the coordinates, X, Y, Z, T, do not form a physical coordinate system. 

One might argue that, if the speed of light is "defined" in a local coordinate system, light speed is always c. How-

ever, as pointed out earlier, such a definition of light speed in a manifold is not well defined. Moreover, a speed in a 

local coordinate system is not a speed in the manifold. Einstein [34] pointed out that "The principle of inertia and the 

principle of the constancy of the velocity of light are valid only with respect to an inertial system."  

For a physical coordinate system, it should be physically realizable. As pointed out by Einstein [35], "In physics, 

the body to which events are spatially referred is called the coordinate system." However, if a coordinate transforma-

tion is considered only as a mathematical tool, then the only requirement is that the transformation is one-one and suf-

ficiently smooth. While such a mathematical tool may have some advantages in simplifying the mathematics, such a 

mathematical coordinate system may not have a valid physical meaning. Currently, however, the physical meaning of 

such a coordinate system is invalidly assumed to be unconditionally valid. 
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ENDNOTES 

1) Einstein's equivalence principle requires that a free fall must result in a co-moving local Minkowski space. Ein-

stein regards that the resulting local space being Minkowski is a physical must, whereas Pauli’s version regards it 

as only a mathematical possibility. Thus, according to Einstein, the causes and consequences of such local coordi-

nate transformation must be investigated in terms of physics, whereas they are ignored in Pauli’s version [1,2]. 

2) General relativity, based on Einstein’s equivalence principle and the principle of general relativity, was proposed 

by Einstein [6] in 1916 and subsequently modified [7] in 1921 because of a now obvious inconsistency between 

physics and unrestricted covariance, which is an extension of the principle of general relativity as an interim as-

sumption [6]. Thus, covariance must be compatible with his equivalence principle, which the Wheeler-Hawking 

school implicitly replaced [36] with the existence of local Minkowski space. The 1915 Einstein equation was in-

consistent with binary pulsar experiments and the 1995 update of Einstein equation was proposed [17] that has 

been proven to be compatible with general relativity [37]. Also, some authors [5] prefer, different from Einstein 

[7], to define K = 8π κc-4. Then, the four velocity uµ would be defined as cdxµ/ds, where ds2 = gαβ dxαdxβ. How-

ever, Eq. (1a) remains the same. 

3) Ohanian [38] would like to clarify himself as an admirer of Einstein, and kindly explained, “When we characterize 

Einstein's insight into the character of gravitation as premature, we don't mean this as a criticism, but as a compli-

ment. Einstein was far ahead of the physicists of his time, and he managed to discover the theory of General Rela-

tivity before relativitistic field equations (and especially the equations for spin 2) and gauge theories were fully 

understood. For this he deserves our profound respect and admiration. The approach taken in the Ohanian-Ruffini 

book is an attempt to see if there is an alternative way to arrive at General Relativity, a way that would perhaps 

have been followed if Einstein had not taken his amazing shortcut to the final result.” However, he did not retract 

their criticism toward Einstein’s equivalence principle or the claim, “there is no such thing as a relativity more 

general than special relativity”  

4) Because an electromagnetic plane wave is a valid idealization in physics, as pointed out by Misner et al [9], such a 

plane wave can be used as an idealized source in gravity. Due to inadequate understanding of special relativity, 

some theorists [39,40] would have objected this because the total energy of a plane wave is infinite. Different from 
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the energy of massive matter, the influence of the energy of an electromagnetic wave, which travels at the speed of 

light, is essentially local [11,19]. This is a physical reason that a bounded solution can be obtained. 

5) Coordinate Relativistic Causality is a physical requirement that the possible maximum velocity of propagation is 

the speed of light in special relativity. Due to behaviour of rods and clocks under gravity, coordinate relativistic 

causality is strengthened as shown by Einstein’s calculation of the bending of light-rays. Thus, coordinate relativ-

istic causality is a useful tool to reject unphysical coordinate system, which could be mistaken as a valid space-

time coordinate system. However, some theorists rejected this because they believed that space-time coordinates 

should have no meaning in physics although this is in conflict with the fact that there are vectors in physics. 

6) The time-tested assumption that phenomena can be explained in terms of identifiable causes is called the principle 

of causality. This is the basis of relevance for all scientific investigations. The principle of causality implies that 

any parameter in a physical solution must be related to some physical causes. In general relativity, Einstein and 

subsequent theorists have used this principle implicitly on symmetry considerations [2-11]. 

7) A physical space, which models reality such that all physical requirements are sufficiently satisfied, has a frame of 

reference that has the Euclidean structure and a time coordinate that is related to local clocks. Thus, the theoretical 

framework of general relativity defines the space-time coordinates in terms of physics.  
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Résumé 

 

Il est démontré que l’applicabilité de la jauge harmonique n’a jamais été généralement  établie si l’on s’attend à ce que 

le système coordonné résultant soit physiquement réalisable. On donne une onde plane gravitationnelle pour montrer 

que la “jauge” harmonique peut ne pas être applicable et que les implications de la jauge linéarisée sur les ondes planes 
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peut être invalide. Concurremment, il est démontré que pour des ondes gravitationnelles faibles, la jauge harmonique 

est valide seulement si le tenseur d’Einstein  est en déviation de deuxième ordre de la métrique plane. Puisque tel ordre 

est invariant de jauge, une onde gravitationnelle faible avec un tenseur d’Einstein de premier ordre implique que cette 

jauge harmonique peut être mal appropriée. De plus, il est démontré que la “condition de jauge” peut ne pas être com-

patible avec la causalité relativiste coordonnée et le principe d’équivalence. Concurremment, il est aussi démontré que 

l’approche de Ohanian et de Ruffini, dans laquelle, à la différence de celle d’Einstein, la gravité linéaire est considérée 

comme étant une dérivée de leur théorie de jauge, n’est pas valable en physique. 
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